Now that I shoved all the wires in there and soldered in the connections for the buttons, I was able to close the case. It still opens, you just have to unscrew the 4 screws to take it apart.

With that, I’ve also made progress on the button reading and programming. As we saw before, the program uses a “truth table” where based on the math formula of (btn# + screenNumber)*screenNumber = menu option, we can calculate all possible outputs and assign them to operations or values.

So, this is a compilation of four different commits:

  1. Update the truth table and screens.
  2. Adding button reading.
  3. Screen updates.
  4. Some small updates.

You can check out all of the above commits to see the process, but here I’ll cover the main part. This is the button reading function.

int read_LCD_buttons(){               // read the buttons
  adc_key_in = 0;
    //adc_key_in = analogRead(A0);       // read the value from the sensor 
    Serial.print("anolog0:"); Serial.println(adc_key_in);
    if (adc_key_in > 550)   return btnRIGHT;
    //adc_key_in = analogRead(A1);       // read the value from the sensor 
    Serial.print("anolog1:"); Serial.println(adc_key_in);
    if (adc_key_in > 550)   return btnUP;
    adc_key_in = analogRead(A2);       // read the value from the sensor 
    Serial.print("anolog2:"); Serial.println(adc_key_in);
    if (adc_key_in > 550)   return btnDOWN;
    adc_key_in = analogRead(A3);       // read the value from the sensor 
    Serial.print("anolog3:"); Serial.println(adc_key_in);
    if (adc_key_in > 550)   return btnLEFT;
    adc_key_in = analogRead(A4);       // read the value from the sensor 
    Serial.print("anolog4:"); Serial.println(adc_key_in);
    if (adc_key_in > 550)   return btnSELECT;
    adc_key_in = analogRead(A5);       // read the value from the sensor 
    Serial.print("anolog5:"); Serial.println(adc_key_in);
    if (adc_key_in > 550)   return btnBACK; 
    return btnNONE;                // when all others fail, return this.
}

At first, I have it log everything to serial so I can see what is happening. Essentially, I took a wire from 3.3vdc that goes to the button. Then the button goes to the analog input, with a jumper going to a resistor to ground. That way, when you are not pushing the button, then the analog pin is not floating, and reads 0. When you push a button, that input reads around 700. So, I put the threshold at greater than 550. This seems to work fairly well.

The only problem is that I didn’t arrange the buttons the way I thought that I was programming them to work. Rather than swap the button wires physically, I just re-ordered them in my program, saying one was two, etc.

Here is the call inside the loop, asking for which button is pressed:

int waiting = 0;
menuNumber = 0;
while ( waiting < 30 ){
waiting++;
delay(10);
lcd_key = read_LCD_buttons(); // read the buttons
// TESTING ONLY // Serial.print(lcd_key);
switch (lcd_key){

case btnUP:{
menuNumber = (1+screenNumber)*screenNumber;
break;
}
case btnDOWN:{
menuNumber = (2+screenNumber)*screenNumber;
break;
}
case btnLEFT:{
menuNumber = (3+screenNumber)*screenNumber;
break;
}
case btnRIGHT:{
menuNumber = (4+screenNumber)*screenNumber;
break;
}
case btnSELECT:{
menuNumber = 255;
break;
}
case btnBACK:{
menuNumber = 256;
break;
}
}
// TESTING ONLY // Serial.print(menuNumber);
}

The above call checks every 10 milliseconds to see if you pressed a button. After 30 checks, it continues through the process and refreshes the screens, etc. This works out to be about a half second, due to the length of the program. There is a small window of about a tenth of a second, where pushing a button doesn’t do anything, but I’ve found in test runs that it was really rare that pushing a button didn’t respond immediately.

If you don’t do this, it is refreshing the screen about 30 times a second as it rips through the program, and there is only a fraction of a second where pushing the button actually works. There is probably a better way to do this, but this works really well for my program.

Now I just need to make it send and receive text messages!

Linux – keep it simple.

2 Replies to “LTE Project: Button it up.”

Leave a Reply to Timothy Woo Cancel reply

Your email address will not be published. Required fields are marked *